Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Necati
dc.contributor.authorAvcı, Derya
dc.date.accessioned2019-10-30T08:45:17Z
dc.date.available2019-10-30T08:45:17Z
dc.date.issued2012en_US
dc.identifier.isbn978-146140457-6
dc.identifier.isbn978-146140456-9
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9380
dc.description.abstractIn this chapter, we present the numerical solution of a space-time fractional anomalous diffusion problem in two-dimensional space. Space derivatives with respect to x and y variables are defined in terms of Riesz-Feller derivatives of order 0< α < 1 and 1 < µ = 2, respectively; θ 1 θ 1 = minα, 1-α and θ 2 θ 2 ≤ minµ, 2-µ are skewness parameters; and the time derivative is defined in sense of Caputo of order ß 0 < ß = 1. It is assumed that the solution and the initial condition functions can be expanded in a complex Fourier series. Grünwald-Letnikov approximation of Caputo derivative is used to take numerical solutions. Furthermore, the comparison of analytical and numerical solutions is proposed by an example and variation of problem parameters are analyzed. Finally, the convergence of analytical and numerical solutions to each other shows the effectiveness of the numerical methods to the present problem.en_US
dc.language.isoengen_US
dc.publisherSpringer New Yorken_US
dc.relation.isversionof10.1007/978-1-4614-0457-6_21en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractionalen_US
dc.subjectFractional Diffusion Equationen_US
dc.subjectTime-Fractional Diffusionen_US
dc.titleNumerical solution of a two-dimensional anomalous diffusion problemen_US
dc.typebookParten_US
dc.relation.journalFractional Dynamics and Controlen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.startpage249en_US
dc.identifier.endpage261en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster