dc.contributor.author | Özgür, Nihal Yılmaz | |
dc.date.accessioned | 2019-11-18T06:40:03Z | |
dc.date.available | 2019-11-18T06:40:03Z | |
dc.date.issued | 2002 | en_US |
dc.identifier.issn | 11232536 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/9806 | |
dc.description.abstract | In this paper, we consider the Hecke groups H(√q), q ≥ 5 prime number, and we find an interesting number sequence which is denoted by dn. For q = 5, we get d2n = L2n+1 and d2n+1 = √5F2n+2 where L2n+1 is (2n + 1)th Lucas number and F2n+2 is (2n + 2)th Fibonacci number. From this sequence, we obtain two new sequences which are, in a sense, generalizations of Fibonacci and Lucas sequences. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fibonacci Numbers | en_US |
dc.subject | Hecke Groups | en_US |
dc.subject | Lucas Numbers | en_US |
dc.title | Generalizations of Fibonacci and Lucas sequences | en_US |
dc.type | article | en_US |
dc.relation.journal | Note di Matematica | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 113 | en_US |
dc.identifier.endpage | 125 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |