Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzgür, Nihal Yılmaz
dc.date.accessioned2019-11-18T06:40:03Z
dc.date.available2019-11-18T06:40:03Z
dc.date.issued2002en_US
dc.identifier.issn11232536
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9806
dc.description.abstractIn this paper, we consider the Hecke groups H(√q), q ≥ 5 prime number, and we find an interesting number sequence which is denoted by dn. For q = 5, we get d2n = L2n+1 and d2n+1 = √5F2n+2 where L2n+1 is (2n + 1)th Lucas number and F2n+2 is (2n + 2)th Fibonacci number. From this sequence, we obtain two new sequences which are, in a sense, generalizations of Fibonacci and Lucas sequences.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFibonacci Numbersen_US
dc.subjectHecke Groupsen_US
dc.subjectLucas Numbersen_US
dc.titleGeneralizations of Fibonacci and Lucas sequencesen_US
dc.typearticleen_US
dc.relation.journalNote di Matematicaen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage113en_US
dc.identifier.endpage125en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster