Iterating the sum of mobius divisor function and Euler Totient Function
Abstract
In this paper, according to some numerical computational evidence, we investigate and prove certain identities and properties on the absolute Mobius divisor functions and Euler totient function when they are iterated. Subsequently, the relationship between the absolute Mobius divisor function with Fermat primes has been researched and some results have been obtained.
Source
MathematicsVolume
7Issue
11Collections
Related items
Showing items related by title, author, creator and subject.
-
Mutlak Möbius bölen fonksiyonu ve özellikleri
Sarp,Ümit (Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2019)Bu tezde Dirichlet çarpımı yardımıyla bir toplam fonksiyonu olan Mutlak Möbius Bölen Fonksiyonu U(n) tanımlanmış ve özellikleri incelenmiştir. İlk olarak U(n) ve Euler Totient φ(n) Fonksiyonu arasındaki özellikler ... -
Certain combinatoric convolution sums arising from bernoulli and euler polynomials
Kim, Daeyeoul; Sarp, Ümit; İkikardeş, Sebahattin (Univ Miskolc Inst Math, 2019)In this study, we introduce the absolute Mobius divisor function U (n). According to some numerical computational evidence, we consider integer pairs (n, n + 1) satisfying; phi (n) = phi (n + 1) = U (n) = U (n + 1). ... -
Applications of k-fibonacci numbers for the starlike analytic functions
Sokol, Janusz; Raina, Ravinder Krishna; Özgür, Nihal Yılmaz (Hacettepe Univ, 2015)The k-Fibonacci numbers F-k,F-n (k > 0), defined recursively by F-k; 0 = 0; F-k,F-1 = 1 and F-k,F-n = k F-k,F-n + F(k, n-1)1 for n >= 1 are used to define a new class SLk. The purpose of this paper is to apply properties ...