Fractional order mixed difference operator and its applications in angular approximation
Abstract
Lebesgue spaces are considered with Muckenhoupt weights. Fractional order mixed difference operator is investigated to obtain mixed fractional modulus of smoothness in these spaces. Using this modulus of smoothness we give the proof of direct and inverse estimates of angular trigonometric approximation. Also we obtain an equivalence between fractional mixed modulus of smoothness and fractional mixed K-functional.