Fixed point theorems in symmetric controlled m-metric type spaces
View/ Open
Access
info:eu-repo/semantics/openAccessAttribution 3.0 United Stateshttp://creativecommons.org/licenses/by/3.0/us/Date
2023Metadata
Show full item recordAbstract
One of the frequently studied approaches in metric fixed-point theory is the generalization of the used metric space. Under this approach, in this study, we introduce a new extension of M-metric spaces, called controlled M-metric spaces, achieved by modifying the triangle inequality and keeping the symmetric condition of the space. The investigation focuses on exploring fundamental properties of this newly defined space, incorporating topological aspects. Several fixed-point theorems and fixed-circle results are established within these spaces complemented by illustrative examples to demonstrate the implications of our findings. Moreover, we present an application involving high-degree polynomial equations.
Source
Symmetry-BaselVolume
15Issue
9Collections
The following license files are associated with this item: