Tensile behaviour of continuous carbon fibre reinforced composites fabricated by a modified 3D printer
View/ Open
Access
info:eu-repo/semantics/openAccessAttribution 3.0 United Stateshttp://creativecommons.org/licenses/by/3.0/us/Date
2024Metadata
Show full item recordAbstract
This study aims to highlight the impact of low-volume (7.5%) continuous carbon fibre reinforcement in three different polymer matrices and the effects of post-processing under hot pressing on the mechanical properties of the structures. A fused deposition modelling (FDM) printer's print head was modified to directly extrude the polymer matrix and continuous carbon fibre tow together. Both pure and carbon fibre-reinforced samples were cured under hot pressing at 100 °C and 10 kN pressure for 15 min. All samples underwent tensile and hardness tests, and the microstructure of fractured samples was analysed using a scanning electron microscope. The results indicate that continuous carbon fibre reinforcement and hot pressing are crucial for enhancing the mechanical performance of 3D-printed objects.
Source
Materials Research ExpressVolume
11Issue
71Collections
The following license files are associated with this item: