dc.contributor.author | Şahin, Recep | |
dc.contributor.author | İkikardeş, Sebahattin | |
dc.contributor.author | Koruoğlu, Özden | |
dc.contributor.author | Cangül, İsmail Naci | |
dc.date.accessioned | 2019-12-06T09:55:19Z | |
dc.date.available | 2019-12-06T09:55:19Z | |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 0126-6705 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/10175 | |
dc.description | Şahin, Recep (Balikesir Author) | en_US |
dc.description.abstract | Let lambda = root D where D is a square free integer such that D = m(2)+1 for m = 1,3, 4, 5,..., or D = n(2) - 1 form = 2, 3, 4, 5,.... Also, let H(lambda) be the Hecke group associated to A. In this paper, we show that the units in H(lambda) are infinite pure periodic lambda-continued fraction for a certain set of integer D, and hence can not be cusp points. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Malaysian Mathematical Sciences Soc | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Hecke Group | en_US |
dc.subject | Fuchsian Group | en_US |
dc.subject | Continued Fraction | en_US |
dc.subject | Cusp Point | en_US |
dc.title | The connections between continued fraction representations of units and certain hecke groups | en_US |
dc.type | article | en_US |
dc.relation.journal | Bulletin of The Malaysian Mathematical Sciences Society | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 205 | en_US |
dc.identifier.endpage | 210 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |