Analysis of a basic SEIRA model with Atangana-Baleanu derivative
Abstract
Since computer worms have very acute and negative effects on computer systems, they are considered as one of the malicious bodies that induce serious issues in these structures. This is why numerous efforts have been given for finding different ways to avert the unwanted occurrences which stem from computer worms' harmful behavior to this day. Our motivation is to make use of Atangana-Baleanu fractional derivative with Mittag-Leffler kernel which has latterly been brought into operation, and thus closely examine the basic SEIRA (susceptible-exposed-infectious-removed-antidotal) model associated with computer worms. To that end, we first prove the conditions that show the existence and uniqueness properties of the solutions for the fractional order model benefiting from fixed point theory. By using various values belonging to the fractional order, we also acquired different numerical simulations emphasizing that the aforementioned derivative is quite impactful.