dc.contributor.author | Demir, Bilal | |
dc.contributor.author | Koruoğlu, Özden | |
dc.contributor.author | Şahin, Recep | |
dc.date.accessioned | 2019-10-17T11:34:58Z | |
dc.date.available | 2019-10-17T11:34:58Z | |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 1224-1784 | |
dc.identifier.issn | 1844-0835 | |
dc.identifier.uri | https://doi.org/10.1515/auom-2016-0035 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8596 | |
dc.description.abstract | We consider the generalized Hecke groups H-p,H-q generated by X(z) = -(z - lambda(p))(-1), Y(z) = -(z + lambda(q))(-1) with lambda(p) = 2 cos(pi/p) and lambda(q) = 2 cos(pi/q) where 2 <= p <= q < infinity, p + q > 4. In this work we study the structure of genus 0 normal subgroups of generalized Hecke groups. We construct an interesting genus 0 subgroup called even subgroup, denoted by H-Ep,H-q. We state the relation between commutator subgroup H'(p,q) of H-p,H-q defined in [1] and the even subgroup. Then we extend this result to extended generalized Hecke groups (H) over bar (p,q). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Ovidius Univ Press | en_US |
dc.relation.isversionof | 10.1515/auom-2016-0035 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Generalized Hecke Groups | en_US |
dc.subject | Extended Generalized Hecke Groups | en_US |
dc.subject | Genus 0 Normal Subgroups | en_US |
dc.subject | Even Subgroups | en_US |
dc.title | On normal subgroups of generalized hecke groups | en_US |
dc.type | article | en_US |
dc.relation.journal | Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica | en_US |
dc.contributor.department | Necatibey Eğitim Fakültesi | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 169 | en_US |
dc.identifier.endpage | 184 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |