Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorArısoy, Mehmet
dc.date.accessioned2019-11-22T06:22:36Z
dc.date.available2019-11-22T06:22:36Z
dc.date.issued1997en_US
dc.identifier.issn0020739X
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9992
dc.description.abstractThree theorems are proved by using fundamental concepts concerned with the eigenvectors and the dimension of the space of eigenvectors and by considering that the Boolean graph Bn is a regular graph of nth degree. The results are discussed by applying these theorems to graphs B 1, B 2, B 3.It is shown that the positive integer nis the greatest eigenvalue of Bn so that multiplicity of n is one and the negative integer — n is the smallest eigenvalue of Bn so that multiplicity of — nis one. Hence, by making a suitable generalization to the spectrums and characteristic polynomials of graphs B 1, B 2, B 3.general formulas are presented related with the discovery of all spectrums and characteristic polynomials of graphs Bn (n ϵ Z+).en_US
dc.language.isoengen_US
dc.relation.isversionof10.1080/0020739970280106en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectConnectivityen_US
dc.subjectGraph in Graph Theoryen_US
dc.subjectRupture Degreeen_US
dc.titleCharacteristic polynomials and spectra of Boolean graphsen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Mathematical Education in Science and Technologyen_US
dc.contributor.departmentNecatibey Eğitim Fakültesien_US
dc.identifier.volume28en_US
dc.identifier.issue1en_US
dc.identifier.startpage69en_US
dc.identifier.endpage74en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster